Electrolytes and Acid-Base Practice for the Boards I

Alan S. L. Yu, M.B., B.Chir.
Director, Division of Nephrology & Hypertension
Jared Grantham Kidney Institute
University of Kansas Medical Center

Alan S. L. Yu, MB, BChir

- University of Cambridge Medical School
- Medicine Residency @BWH
- Nephrology Fellowship @BWH
- Professor of Medicine @University of Kansas
 - Clinical focus: Nephrology
 - Research focus: Kidney physiology, PKD

Disclosures

• I have no financial disclosures

Objectives

- Use ABIM-style MCQs to:
 - Review the diagnostic approach to common electrolyte disorders, including hypernatremia, hyponatremia and hypokalemia
 - Review the approach to management of common electrolyte disorders

A 35-year-old man with bipolar disorder, maintained on lithium for 10 years, is referred to you for chronic polyuria and polydipsia. He complains that he has to void once every hour.

Serum sodium 144 mEq/L

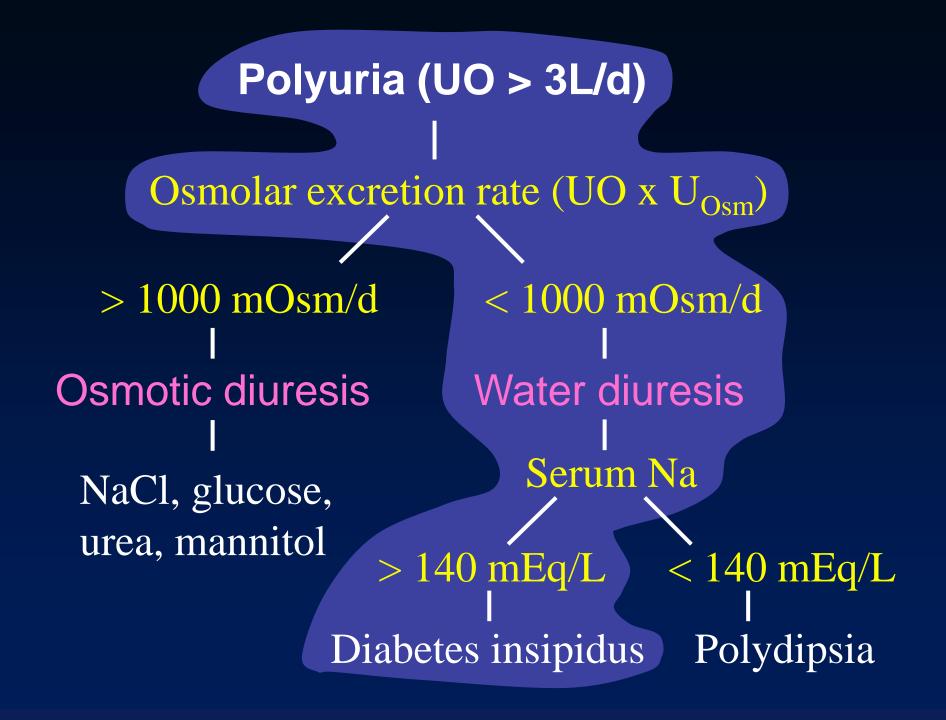
Blood urea nitrogen 35 mg/dL

Serum creatinine 1.9 mg/dL

Serum osmolality 292 mOsm/kg

24-hr urine volume 5 L

Urine sodium 28 mEq/L


Urine osmolality 190 mOsm/kg

All of the following might be appropriate in the management of this patient EXCEPT:

- (A) Thiazide diuretic
- (B) Dietary salt reduction
- (C) Discontinuation of lithium
- (D) Fluid restriction
- (E) Amiloride

All of the following might be appropriate in the management of this patient EXCEPT:

- (A) Thiazide diuretic
- (B) Dietary salt reduction
- (C) Discontinuation of lithium
- (D) Fluid restriction
 - (E) Amiloride

Causes of nephrogenic DI

- Electrolyte disorders
 - Hypercalcemia
 - Hypokalemia
- Drugs
 - Lithium
 - Demeclocycline
 - Amphotericin B, cidofovir, tenofovir, foscarnet
 - Cisplatin, cyclophosphamide, ifosfamide
- Tubulointerstitial diseases
 - Obstructive uropathy
 - Sickle cell disease
 - Amyloidosis
 - Polycystic kidney disease
- Chronic kidney disease
- Genetic

Treatment of nephrogenic diabetes insipidus

- Treat the underlying cause, if possible
- Desmopressin (supraphysiological dose)
- Indomethacin, celecoxib
- Low salt diet, thiazide diuretic, amiloride
 - ↓Delivery of NaCl to IMCD

A 55 year-old man with colonic carcinoma undergoes resection of his tumor and diverting colostomy. Post-operatively he has prolonged ileus and is therefore started on intravenous total parenteral nutrition with 25 kCal/kg/day, and 1.6 g protein/kg/day. Four days later, a renal consult is called for hypernatremia. On examination, the patient is clinically euvolemic.

Serum sodium 151 mEq/L

Blood glucose 138 mg/dL

Blood urea nitrogen 33 mg/dL

Serum creatinine 0.9 mg/dL

Urine osmolality 480 mOsm/kg

Urine sodium 30 mEq/L

Urine volume (24 h) 3700 mL Case 2

Which of the following is the MOST LIKELY cause of his hypernatremia?

- (A) Central diabetes insipidus
- (B) Nephrogenic diabetes insipidus
- (C) Osmotic diarrhea
- (D) Osmotic diuresis
- (E) Excess intravenous saline

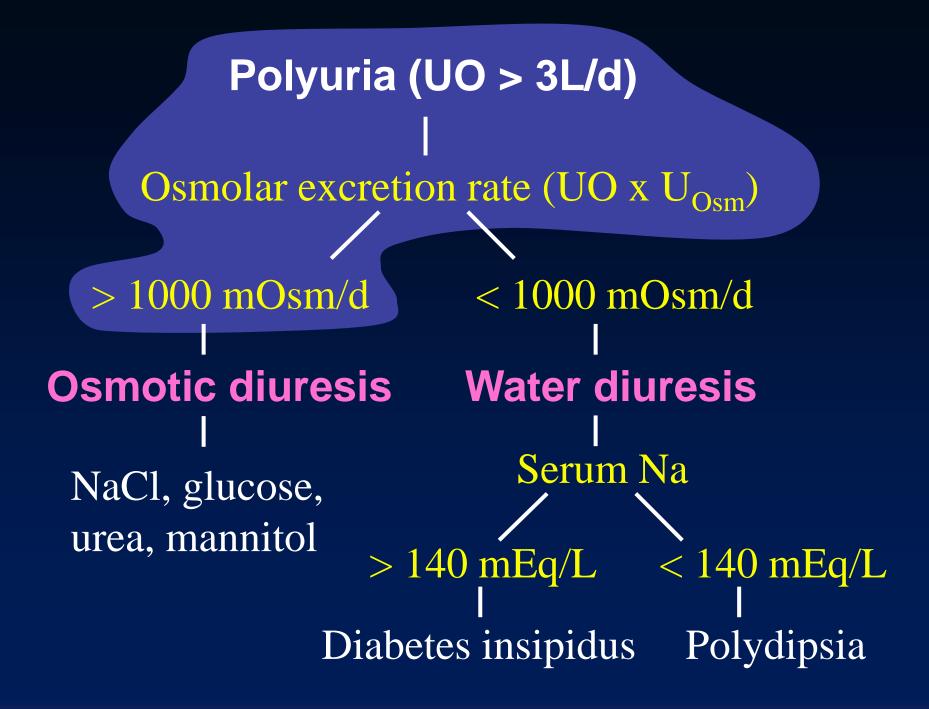
Which of the following is the MOST LIKELY cause of his hypernatremia?

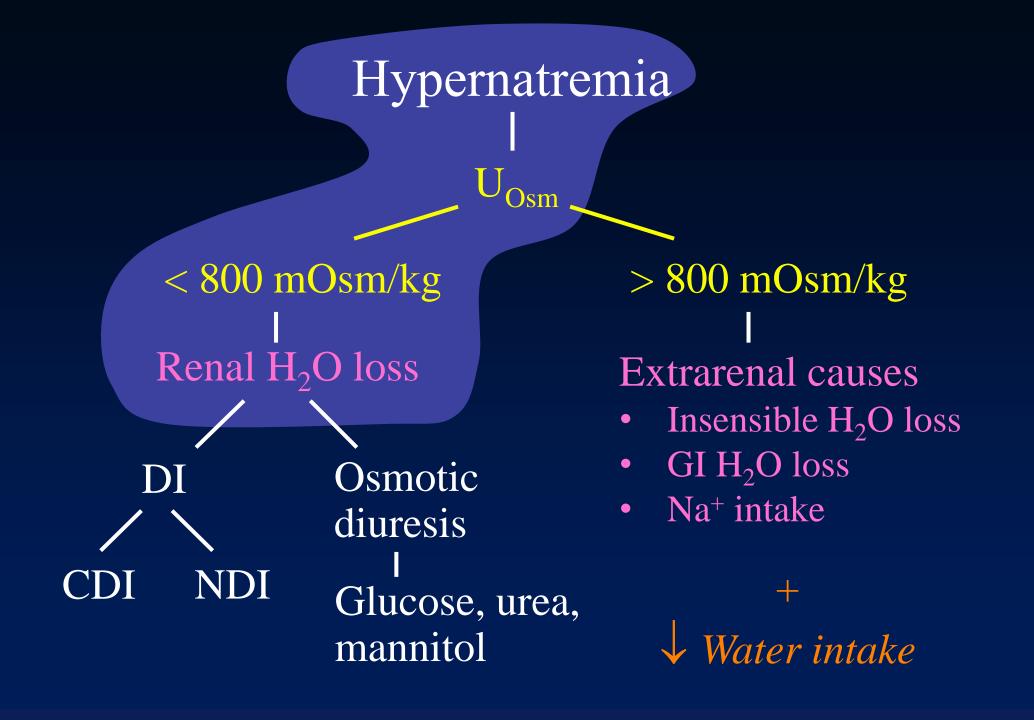
- (A) Central diabetes insipidus
- (B) Nephrogenic diabetes insipidus
- (C) Osmotic diarrhea
- (D) Osmotic diuresis
 - (E) Excess intravenous saline

```
Polyuria (UO > 3L/d)
     Osmolar excretion rate (UO x U<sub>Osm</sub>)
  > 1000 \text{ mOsm/d}
                         < 1000 \text{ mOsm/d}
Osmotic diuresis
                        Water diuresis
                            Serum Na
 NaCl, glucose,
 urea, mannitol
                   > 140 \text{ mEq/L} < 140 \text{ mEq/L}
                 Diabetes insipidus
                                       Polydipsia
```

Osmolar excretion rate

Osmolar excretion rate


= Urine osmolality x Urine volume


(mOsm/kg) (L/day)

Normal 500-1000 mOsm per day

In this patient:

OER = 480 mOsm/kg x 3.7L/day = 1776 mOsm/day

A 17-year-old woman who is otherwise fit and well, and on no medications, presents with a history of polyuria since early childhood.

On presentation:

Serum sodium 141 mEq/L

Serum osmolality 285 mOsm/kg

Urine osmolality 210 mOsm/kg

Urine volume 4 L

After 4 hrs of water deprivation:

Serum sodium 146 mEq/L

Serum osmolality 298 mOsm/kg

Urine osmolality 250 mOsm/kg

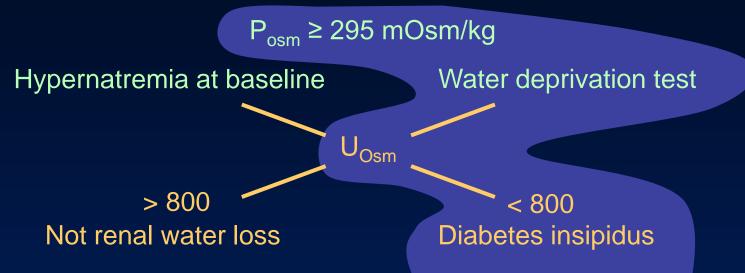
1 hr after administration of 10 µg intranasal DDAVP:

Serum sodium 143 mEq/L

Serum osmolality 292 mOsm/kg

Urine osmolality 585 mOsm/kg

Which of the following statements could be TRUE?


- (A) She is entirely normal since her baseline serum sodium is normal
- (B) The water deprivation test is non-diagnostic because water deprivation was not continued for long enough
- (C) She has central diabetes insipidus
- (D) She has nephrogenic diabetes insipidus
- (E) She has an osmotic diuresis with washout of her medullary interstitium concentrating gradient

Which of the following statements could be TRUE?

- (A) She is entirely normal since her baseline serum sodium is normal
- (B) The water deprivation test is non-diagnostic because water deprivation was not continued for long enough
- (C) She has central diabetes insipidus
- (D) She has nephrogenic diabetes insipidus
- (E) She has an osmotic diuresis with washout of her medullary interstitium concentrating gradient

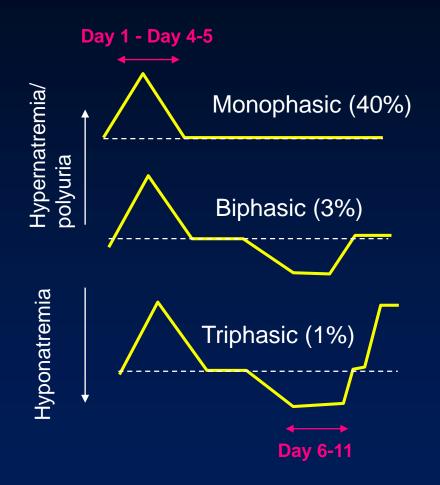
DDX of renal water loss

1. Is there a defect in urinary concentrating ability when ADH release is maximally stimulated?

2. Can the defect in urinary concentrating ability be reversed by an ADH analog?

A 45-year-old female underwent transsphenoidal resection of a large pituitary adenoma 1 week ago. Immediately postoperatively she developed polyuria and was treated with DDAVP for 2 days and encouraged to increase po fluid intake. She returns with change in mental status, has a seizure in the emergency room, and is found to have a serum sodium of 120 mEq/L.

Which of the following statements about her hyponatremia is TRUE?


- (A) Her hyponatremia is caused by inappropriate treatment with DDAVP
- (B) She has pseudohyponatremia
- (C) She has central hypothyroidism
- (D) She has psychogenic polydipsia
- (E) Her hyponatremia is due to unregulated vasopressin release from the posterior pituitary

Which of the following statements about her hyponatremia is TRUE?

- (A) Her hyponatremia is caused by inappropriate treatment with DDAVP
- (B) She has pseudohyponatremia
- (C) She has central hypothyroidism
- (D) She has psychogenic polydipsia
- (E) Her hyponatremia is due to unregulated vasopressin release from the posterior pituitary

Pathogenesis of disordered water metabolism after transsphenoidal surgery

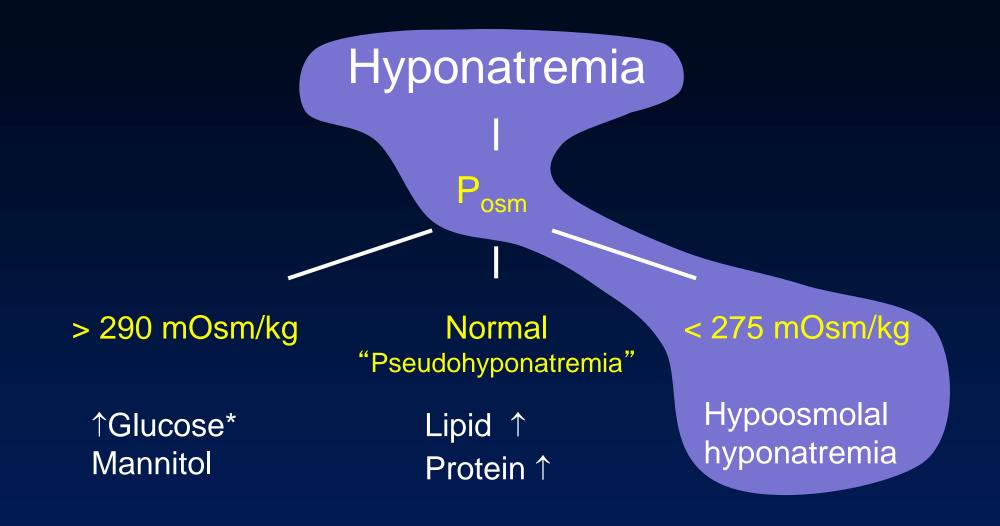
A 45-year-old male smoker presents with confusion and drowsiness. His only medications are bronchodilator and steroid inhalers. On examination, his BP is 125/86, HR 78, moist mucous membranes, good skin turgor, jugular venous pressure 4 cm, lung fields clear to auscultation, no peripheral edema. Chest radiograph shows emphysematous changes but is otherwise normal.

Serum sodium 116 mEq/L

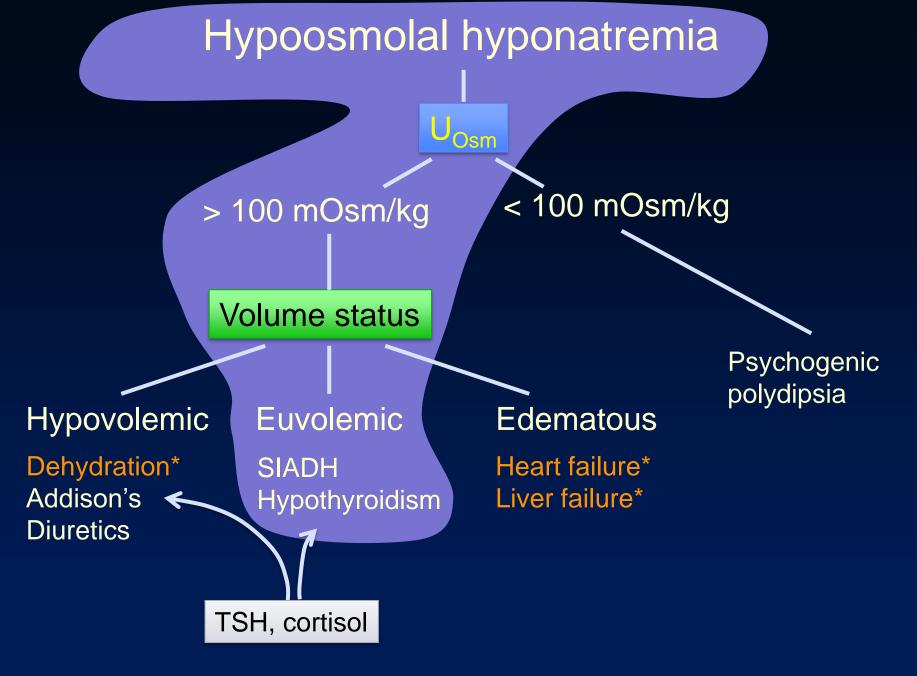
Serum osmolality 256 mOsm/kg

Urine sodium 96 mEq/L

Urine potassium 87 mEq/L


Urine osmolality 670 mOsm/kg

Which one of the following is most likely to reveal the cause of this patient's hyponatremia?


- (A) Water deprivation test
- (B) Computed tomography scan of the chest
- (C) Serum protein electrophoresis
- (D) Echocardiogram
- (E) Assessment of daily fluid intake

Which one of the following is most likely to reveal the cause of this patient's hyponatremia?

- (A) Water deprivation test
- (B) Computed tomography scan of the chest
 - (C) Serum protein electrophoresis
- (D) Echocardiogram
- (E) Assessment of daily fluid intake

*Correct serum Na⁺ by 1.6 for every 100 mg/dL ∆ in glucose

Causes of SIADH

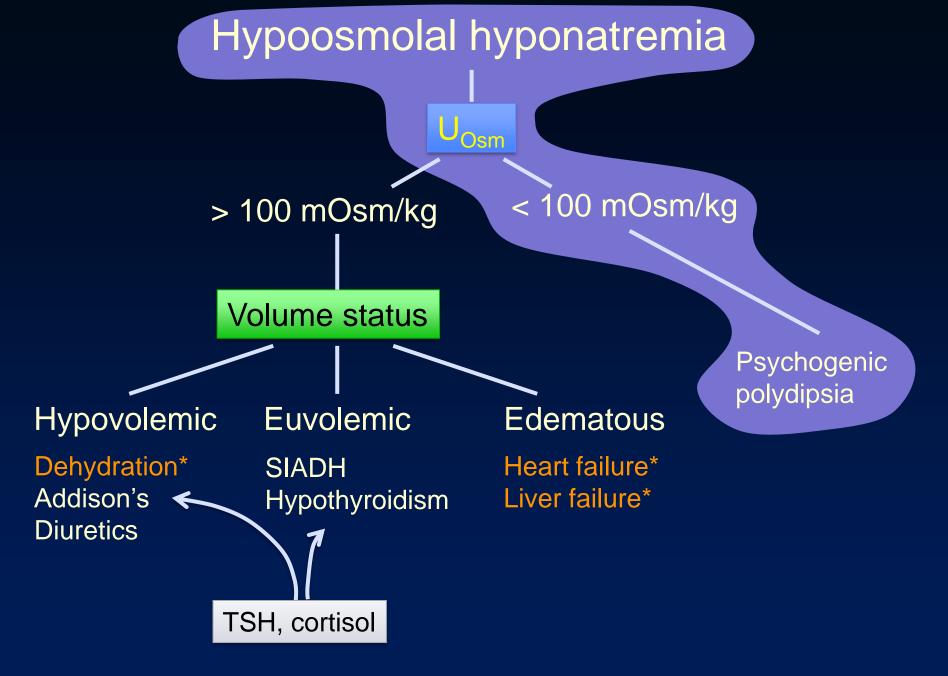
- 1. Ectopic production by tumors
 - Small cell carcinoma of the lung
- 2. Neurological
 - Meningoencephalitis, CVA, neoplasm
- 3. Pulmonary disease (uncommon)
 - Pneumonia & TB
- 4. Drugs
 - SSRI and other psychoactive drugs, chlorpropamide, cyclophosphamide, vincristine
- 5. Postoperative patient
- 6. Exercise-associated hyponatremia

An 18-year-old woman with schizophrenia, maintained on risperidone, presents with a generalized seizure.

Serum sodium 120 mEq/L

Serum osmolality 252 mOsm/kg

Urine sodium 20 mEq/L


Urine osmolality 90 mOsm/kg

Which of the following is the best treatment for this patient?

- (A) 3% NaCl at 100 mL/hr
- (B) 0.9% NaCl, 500 mL IV bolus
- (C) Tolvaptan
- (D) Stop risperidone
- (E) Fluid restriction

Which of the following is the best treatment for this patient?

- (A) 3% NaCl at 100 mL/hr
- (B) 0.9% NaCl, 500 mL IV bolus
- (C) Tolvaptan
- (D) Stop risperidone
- (E) Fluid restriction

A 38 year-old man was diagnosed with squamous cell carcinoma of the head and neck 2 months ago and has known chronic SIADH. On a routine clinic visit he is alert, oriented and feels fine but reports subtle impairment in his ability to think clearly.

Serum sodium 116 mEq/L

Serum potassium 3.4 mEq/L

Serum chloride 85 mEq/L

Serum bicarbonate 23 mEq/L

Urine sodium 90 mEq/L

Urine potassium 23 mEq/L

Urine osmolality 464 mOsm/kg

Which of the following would be appropriate in the management of this patient:

- (A) Hypertonic saline to raise serum Na by 14 mEq/L in the first day
- (B) 0.5 L fluid restriction and salt tablets
- (C) Tolvaptan to raise serum Na by 2 mEq/L per hour over the next 12 hr
- (D) 0.9% NaCl at 125 mL/hr
- (E) DDAVP 1 mcg SQ

Which of the following would be appropriate in the management of this patient:

- (A) Hypertonic saline to raise serum Na by 14 mEq/L in the first day
- (B) 0.5 L fluid restriction and salt tablets
 - (C) Tolvaptan to raise serum Na by 2 mEq/L per hour over the next 12 hr
 - (D) 0.9% NaCl at 125 mL/hr
 - (E) DDAVP 1 mcg SQ

Treatment of SIADH

Water restriction

Isotonic saline

Hypertonic saline / NaCl tablets

Urea powder

Furosemide

Vasopressin antagonist (e.g. tolvaptan) or demeclocycline

Avoiding Osmotic Demyelination Syndrome (ODS) in Patients with Chronic Hyponatremia

Population at risk:

•Hyponatremia with serum Na < 120 mmol/L of > 48 hours' duration

Limits not to exceed:

- •For high risk of ODS: 8 mmol/L in any 24-hour period
- •For normal risk of ODS: 10-12 mmol/L in any 24-hour period; 18 mmol/L in any 48-hour period.

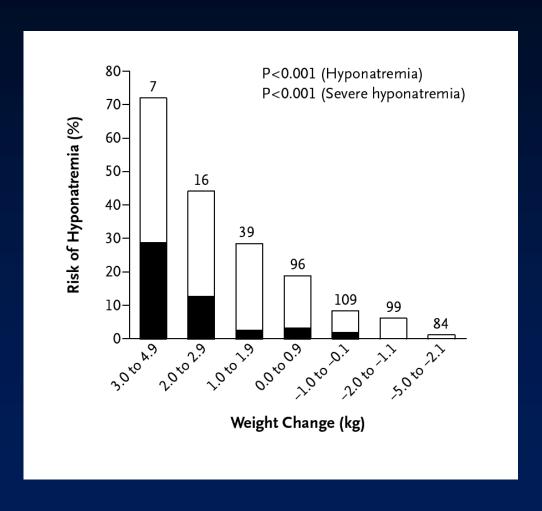
Verbalis et al., Diagnosis, evaluation, and treatment of hyponatremia: Expert panel recommendations. AJM 2013 126 (10 Suppl 1):S1-42

An 18 year-old female college student runs the Boston marathon. It is her first marathon and so she is careful to keep well hydrated before and during the race. At the finish line, she feels severely nauseated, dyspneic and has generalized headache. On exam, she is lethargic, dyspneic and confused, but looks well hydrated. BP 102/64, HR 95.

Her POC blood sodium concentration is 112 mEq/L.

Which of the following would be the best initial treatment for this patient:

- (A) 1 liter of intravenous 0.9% NaCl
- (B) Fluid restriction and observe for 1 hour
- (C) Salt tablets orally
- (D) 100 mL intravenous 3% NaCl
- (E) 1 liter of sports drink


Which of the following would be the best initial treatment for this patient:

- (A) 1 liter of intravenous 0.9% NaCl
- (B) Fluid restriction and observe for 1 hour
- (C) Salt tablets orally
- (D) 100 mL intravenous 3% NaCl
- (E) 1 liter of sports drink

Exercise-associated hyponatremia (EAH)

Pathogenesis of EAH

- EAH is dilutional due to excessive water or sports drink consumption, not due to salt loss/dehydration
- In addition, ADH levels are inappropriately elevated and U_{osm} is high

Consensus Statement of the 1st International Exercise-Associated Hyponatremia Consensus Development Conference, Cape Town 2005:

- Any athlete with EAH and respiratory insufficiency, confusion, obtundation, N/V can be treated on-site with 100 mL of 3% NaCl over 10 min (expected Δ [Na+] ~ 2-3 mmol/L)
- If symptomatic EAH persists, repeat 100 mL 3% NaCl hourly at a rate of 100 mL/h and monitor serum Na hourly

A 66 yr old female with NIDDM presents with several days of malaise, lethargy, polyuria and decreased oral intake. Physical examination reveals tachycardia, orthostatic hypotension and dry mucous membranes.

Serum sodium 135 mEq/L

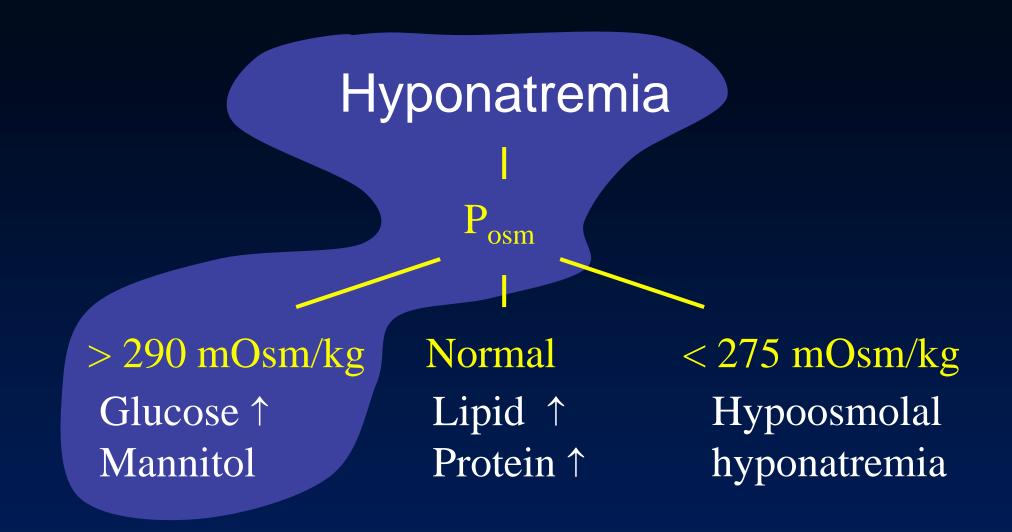
Serum potassium 5.2 mEq/L

Serum chloride 96 mEq/L

Serum bicarbonate 25 mEq/L

Blood urea nitrogen 42 mg/dL

Serum creatinine 1.8 mg/dL


Serum glucose 975 mg/dL

After initiating insulin and with 2L of isotonic saline, which of the following would be the best treatment to normalize the patient's serum sodium concentration:

- (A) Hypertonic saline
- (B) Oral fluid restriction
- (C) Hypotonic saline
- (D) Tolvaptan
- (E) Salt tablets

After initiating insulin and with 2L of isotonic saline, which of the following would be the best treatment to normalize the patient's serum sodium concentration:

- (A) Hypertonic saline
- (B) Oral fluid restriction
- (C) Hypotonic saline
- (D) Tolvaptan
- (E) Salt tablets

Correction for hyperglycemia:

For every 100 mg/dL increase in glucose, add 1.6 mEq/L to Na+

Correction of serum Na for hyperglycemia

Increase in glucose = 975 - 100 = 875

Na correction = $8.75 \times 1.6 = 14$

Corrected Na = 135 + 14 = 149

A 74 yr old female with a history of hypertension, hyperlipidemia and depression is admitted with unsteady gait and a fall at home. Medications: Hydrochlorothiazide, lisinopril, simvastatin, sertraline. On exam she appears euvolemic.

Serum sodium 117 mEq/L

Serum potassium 4.6 mEq/L

Serum chloride 92 mEq/L

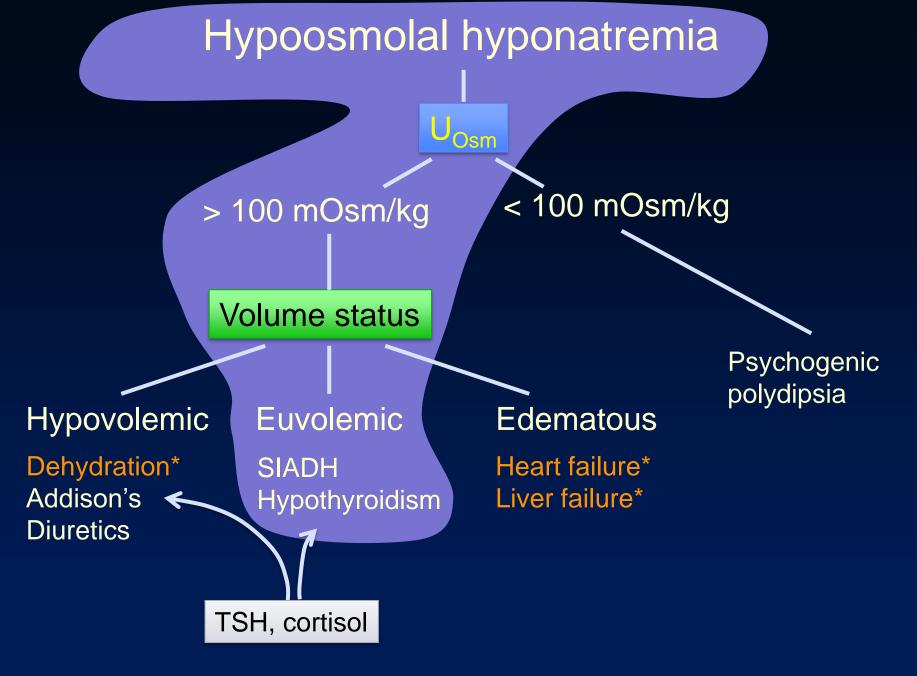
Serum total cholesterol 220 mg/dL

Serum triglycerides 345 mg/dL

Serum cortisol 15 μ g/dL (NR 5-15 μ g/dL)

Serum free T4 0.9 ng/dL (NR 0.7-2.0 ng/dL)

Urine sodium 58 mEq/L


Urine osmolality 230 mOsm/kg

What is the most likely cause of her hyponatremia

- (A) Pseudohyponatremia
- (B) Adrenal insufficiency
- (C) Hypothyroidism
- (D) ADH-secreting tumor
- (E) Adverse effect of medications

What is the most likely cause of her hyponatremia

- (A) Pseudohyponatremia
- (B) Adrenal insufficiency
- (C) Hypothyroidism
- (D) ADH-secreting tumor
- (E) Adverse effect of medications

A 63 yr old female with hypertension was started on hydrochlorothiazide 2 months ago and presents with drowsiness, confusion and hyponatremia.

Admission:

Serum sodium 110 mEq/L

Urine osmolality 430 mg/dL

She is initiated on 3% NaCl at 200 mL/hr and kept NPO. Five hours later her serum sodium is 124 mEq/L. Her mental status is unchanged.

Which of the following would be the most appropriate next step in the management of this patient:

- (A) Change rate of 3% NaCl to 80 mL/hr
- (B) Discontinue fluids and initiate tolvaptan
- (C) Discontinue fluids and initiate 1 L daily oral fluid restriction
- (D) Discontinue hypertonic saline and start 5% dextrose and DDAVP
- (E) None of the above

Which of the following would be the most appropriate next step in the management of this patient:

- (A) Change rate of 3% NaCl to 80 mL/hr
- (B) Discontinue fluids and initiate tolvaptan
- (C) Discontinue fluids and initiate 1 L daily oral fluid restriction
- (D) Discontinue hypertonic saline and start 5% dextrose and DDAVP
- (E) None of the above

Avoiding Osmotic Demyelination Syndrome (ODS) in Patients with Chronic Hyponatremia

Population at risk:

•Hyponatremia with serum Na < 120 mmol/L of > 48 hours' duration

Limits not to exceed:

- •For high risk of ODS: 8 mmol/L in any 24-hour period
- •For normal risk of ODS: 10-12 mmol/L in any 24-hour period; 18 mmol/L in any 48-hour period.

Verbalis et al., Diagnosis, evaluation, and treatment of hyponatremia: Expert panel recommendations. AJM 2013 126 (10 Suppl 1):S1-42

Osmotic demyelination syndrome

- Central and extrapontine myelinolysis
- Risk factors:
 - Excessive rate or amount of correction of serum Na⁺
 - Malnutrition and alcoholism
 - Severe liver disease
 - Hypoxia
- Classic CPM presents with dysphagia, quadriparesis, locked-in syndrome
- Can be permanent or fatal

A 30-year-old female with anorexia nervosa is found on routine laboratory examination to be hypokalemic. BP 95/45, HR 66.

Serum sodium 133 mEq/L

Serum potassium 3.2 mEq/L

Serum chloride 93 mEq/L

Serum bicarbonate 32 mEq/L

Blood urea nitrogen 6 mg/dL

Serum creatinine 0.6 mg/dL

24 hour urine

Volume 1 L

Potassium 80 mEq/L

Chloride 54 mEq/L

Which of the following is the most likely cause of this patient's laboratory findings:

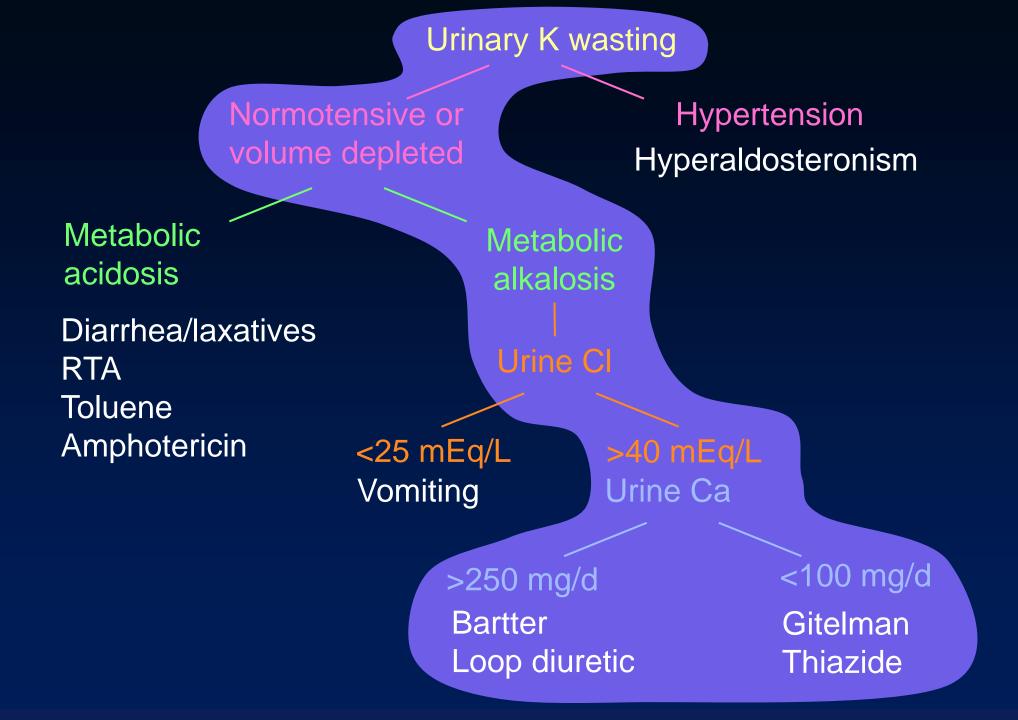
- (A) Surreptitious vomiting
- (B) Laxative abuse
- (C) Bartter syndrome
- (D) Licorice ingestion
- (E) Diuretic abuse

Which of the following is the most likely cause of this patient's laboratory findings:

- (A) Surreptitious vomiting
- (B) Laxative abuse
- (C) Bartter syndrome
- (D) Licorice ingestion
- (E) Diuretic abuse

DDX of hypokalemia

Cellular shift


Alkalemia [
Insulin (
β-agonist
Hypokalemic
periodic paralysis

GI loss

Diarrhea (Vomiting)

Urinary K wasting

24 hr $U_K > 25$ mEq. TTKG > 3

A 23-year-old male is referred for work-up of newly diagnosed hypertension. He is otherwise asymptomatic. Family history is non-contributory. BP 155/97. He is obese.

Serum sodium 143 mEq/L

Serum potassium 3.0 mEq/L

Serum chloride 106 mEq/L

Serum bicarbonate 29 mEq/L

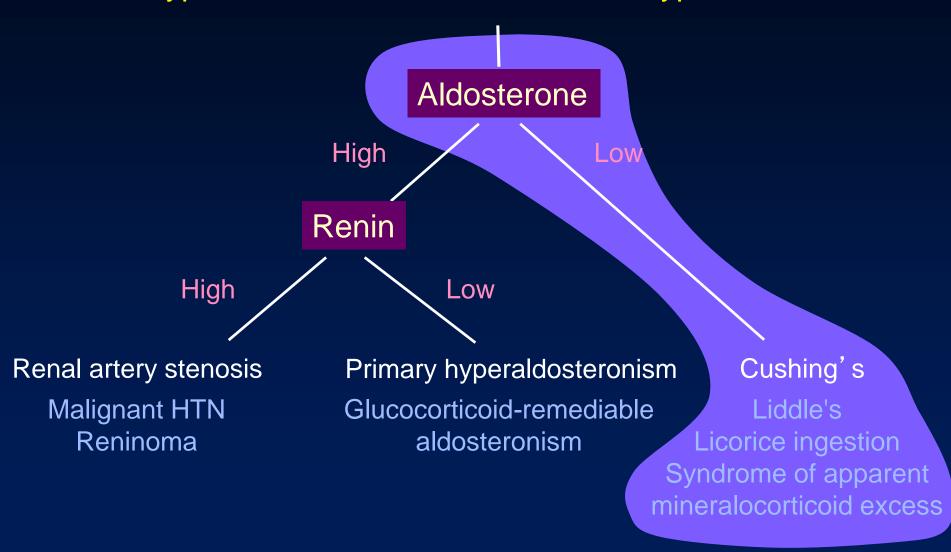
Blood urea nitrogen 12 mg/dL

Serum creatinine 1.2 mg/dL

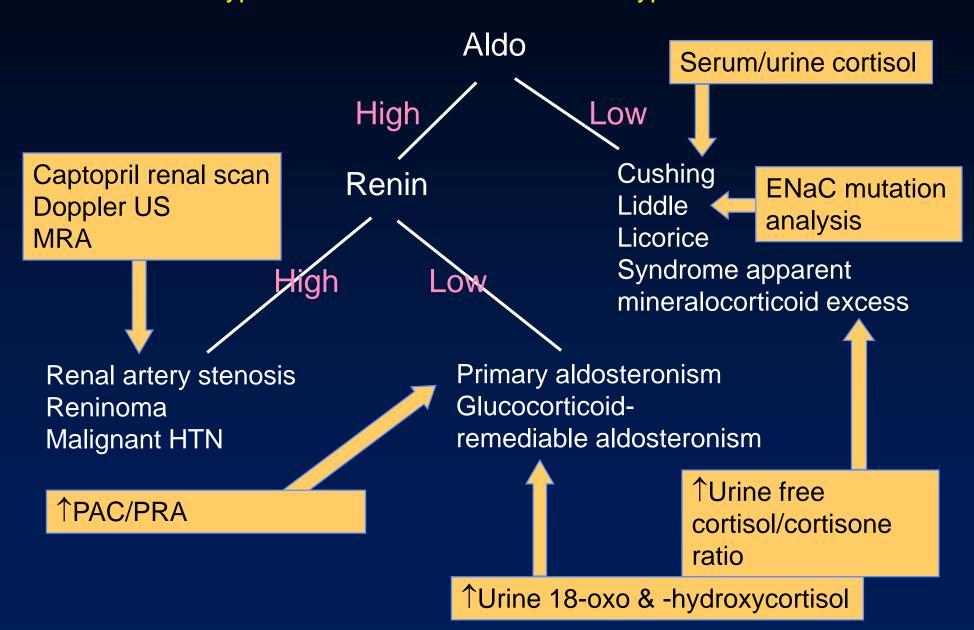
Plasma renin activity 0.7 ng/mL/hr (NR 1-6)

Plasma aldosterone 3.9 ng/dl (NR 5-20)

24 hour urine potassium 65 mEq


Which of the following tests would be most likely to be helpful in the diagnosis:

- (A) Serum metanephrines
- (B) Doppler ultrasound of the renal arteries
- (C) 24 hr urine aldosterone
- (D) 24 hr urine 18-hydroxycortisol and 18-oxocortisol
- (E) 24 hr urine cortisol


Which of the following tests would be most likely to be helpful in the diagnosis:

- (A) Serum metanephrines
- (B) Doppler ultrasound of the renal arteries
- (C) 24 hr urine aldosterone
- (D) 24 hr urine 18-hydroxycortisol and 18-oxocortisol
- (E) 24 hr urine cortisol

HYPERALDOSTERONISM: Hypokalemia metabolic alkalosis + hypertension

HYPERALDOSTERONISM: Hypokalemia metabolic alkalosis + hypertension

A 19-year-old Asian male presents to the emergency room with acute onset of flaccid muscle weakness. He denies diarrhea or vomiting and is using no medications. BP 125/88, HR 95.

Serum sodium 139 mEq/L

Serum potassium 1.7 mEq/L

Serum chloride 105 mEq/L

Serum bicarbonate 25 mEq/L

Serum glucose 100 mg/dL

Blood urea nitrogen 11 mg/dL

Urine potassium < 5 mEq/L

Which of the following would be appropriate in the management of this patient:

- (A) Repletion with KCI, 160 mEq daily
- (B) Loperamide
- (C) Indomethacin
- (D) Check serum thyroid-stimulating hormone level
- (E) None of the above

Which of the following would be appropriate in the management of this patient:

- (A) Repletion with KCI, 160 mEq daily
- (B) Loperamide
- (C) Indomethacin
- (D) Check serum thyroid-stimulating hormone level
 - (E) None of the above

DDX of hypokalemia

Cellular shift

GI loss

Urinary K wasting

Alkalemia

Insulin

β-agonist

Vomiting Diarrhea

24 hr $U_K > 25$ mEq

TTKG > 3

Hypokalemic periodic paralysis

Thyrotoxic hypokalemic periodic paralysis

- Presents age 20-40 yr
- Predominantly Asians, mostly male (20:1 M:F ratio)
- Only with thyrotoxicosis (~2% of Asians with thyrotoxicosis) which may be asymptomatic
- Other clinical features identical to familial form
 - Precipitated by meals or exercise
 - Repetitive episodes of acute profound hypokalemia
 - Recovery of serum K⁺ within hrs after each episode without repletion, either spontaneously or with propanolol (if Rx with KCl, give slowly ≤ 10 mmol/hr & avoid dextrose
 - Low urine K⁺ and low TTKG (< 1)

A 67 year-old male with hypertension for 30 years has been having worsening blood pressure control over the past year. He had a myocardial infarction 2 years ago. His current medications include amlodipine, carvedilol and clonidine. On a clinic visit, his BP is 163/95.

Serum sodium 141 mEq/L

Serum potassium 3.4 mEq/L

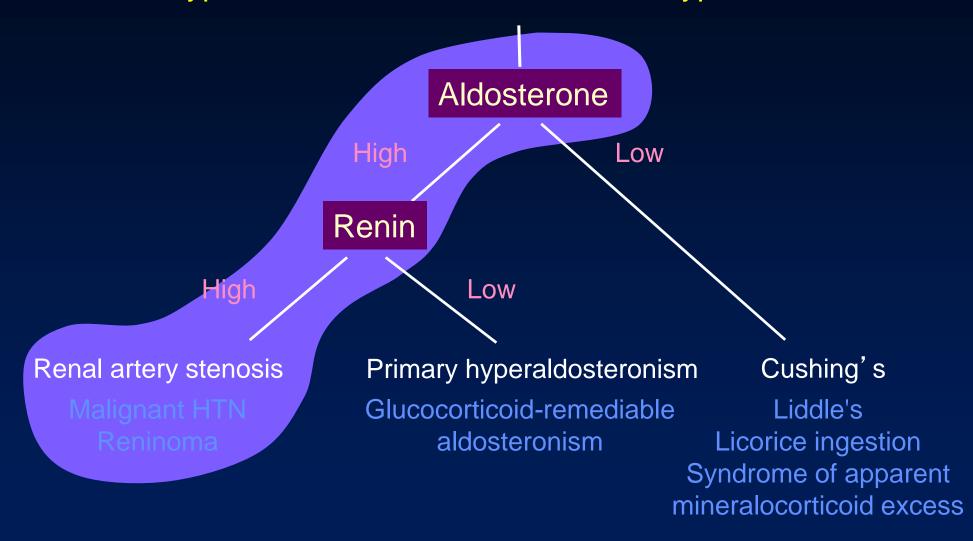
Serum chloride 108 mEq/L

Serum bicarbonate 27 mEq/L

Serum creatinine 1.6 mg/dL

Plasma renin activity 7.3 ng/mL/hr (NR 1-6)

Plasma aldosterone 24 ng/dl (NR 5-20)


What is the most likely cause of this patient's hypokalemia?

- (A) Reninoma
- (B) Adrenal cortical adenoma
- (C) Renal artery stenosis
- (D) Ingestion of licorice
- (E) Gordon's syndrome

What is the most likely cause of this patient's hypokalemia?

- (A) Reninoma
- (B) Adrenal cortical adenoma
- (C) Renal artery stenosis
- (D) Ingestion of licorice
- (E) Gordon's syndrome

HYPERALDOSTERONISM: Hypokalemia metabolic alkalosis + hypertension

